If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying y + y2 = 63 Solving y + y2 = 63 Solving for variable 'y'. Reorder the terms: -63 + y + y2 = 63 + -63 Combine like terms: 63 + -63 = 0 -63 + y + y2 = 0 Begin completing the square. Move the constant term to the right: Add '63' to each side of the equation. -63 + y + 63 + y2 = 0 + 63 Reorder the terms: -63 + 63 + y + y2 = 0 + 63 Combine like terms: -63 + 63 = 0 0 + y + y2 = 0 + 63 y + y2 = 0 + 63 Combine like terms: 0 + 63 = 63 y + y2 = 63 The y term is y. Take half its coefficient (0.5). Square it (0.25) and add it to both sides. Add '0.25' to each side of the equation. y + 0.25 + y2 = 63 + 0.25 Reorder the terms: 0.25 + y + y2 = 63 + 0.25 Combine like terms: 63 + 0.25 = 63.25 0.25 + y + y2 = 63.25 Factor a perfect square on the left side: (y + 0.5)(y + 0.5) = 63.25 Calculate the square root of the right side: 7.95298686 Break this problem into two subproblems by setting (y + 0.5) equal to 7.95298686 and -7.95298686.Subproblem 1
y + 0.5 = 7.95298686 Simplifying y + 0.5 = 7.95298686 Reorder the terms: 0.5 + y = 7.95298686 Solving 0.5 + y = 7.95298686 Solving for variable 'y'. Move all terms containing y to the left, all other terms to the right. Add '-0.5' to each side of the equation. 0.5 + -0.5 + y = 7.95298686 + -0.5 Combine like terms: 0.5 + -0.5 = 0.0 0.0 + y = 7.95298686 + -0.5 y = 7.95298686 + -0.5 Combine like terms: 7.95298686 + -0.5 = 7.45298686 y = 7.45298686 Simplifying y = 7.45298686Subproblem 2
y + 0.5 = -7.95298686 Simplifying y + 0.5 = -7.95298686 Reorder the terms: 0.5 + y = -7.95298686 Solving 0.5 + y = -7.95298686 Solving for variable 'y'. Move all terms containing y to the left, all other terms to the right. Add '-0.5' to each side of the equation. 0.5 + -0.5 + y = -7.95298686 + -0.5 Combine like terms: 0.5 + -0.5 = 0.0 0.0 + y = -7.95298686 + -0.5 y = -7.95298686 + -0.5 Combine like terms: -7.95298686 + -0.5 = -8.45298686 y = -8.45298686 Simplifying y = -8.45298686Solution
The solution to the problem is based on the solutions from the subproblems. y = {7.45298686, -8.45298686}
| 3m-4(-5m-2)=-15 | | 2log[5](3-x)-log[5](2)=log[5](50) | | 10p+89=-51-10p | | -(|x|-7)=10 | | 25(2x-3)=125(x-7) | | 76=4y | | 6(f+5)=5.7-0.3t | | 15-10x=-105 | | 6-|5d|=1 | | 4x+7=49-10x | | -196+12x-x=57 | | 2x-20=-x+34 | | 0.5x-15=-7 | | (8-0)/3=x | | 2x^2-7x-11=0 | | 17u-24/18= | | (-7d+10)(-2)= | | 6x+5x-145=75 | | 12b+11=14 | | 16+10j=76 | | 4x+7=-3x | | -11+16=5 | | (22-4)/3=x | | 12x+3-x= | | (22-4)/3= | | x^3+0-3x+2=0 | | 5y-32=28 | | 0.1x+0.6=1.5 | | -8+(x+2)= | | k^2-2k^2-99=0 | | 16y+14+4y=32 | | 16x-3+3x-5=-3x-67 |